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ABSTRACT 

There are various viscometric flow models available at present 

to determine the mechanical properties of incompressible non-Newtonian 

fluids. In most of these measurements of the normal stresses is quite 

a challenge. 

theory for the measurement of the "second normal stress." 

dicate how such a measurement can be performed in practice. 

We introduce a new viscometric flow model and derive a 

We also in- 
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1. In t roduc t ion  

A t  p re sen t  t h e r e  are va r ious  v iscometr ic  flow models ( t h i s  terminolo- 

gy is due t o  Coleman 121) a v a i l a b l e  f o r  incompressible  now Newtonian f l u i d s .  

This  class of flows desc r ibes  mechanical behavior  of an incompressible  f l u i d  

completely by t h r e e  material func t ions  rl, Ol and O2 which depend on t h e  

rate of shear  K. I n  t h e  l i t e r a t u r e  n is  known as t h e  v i s c o s i t y  func t ion  

and 0. and o2 are known as t h e  f i r s t  and second normal stresses of t h e  

f l u i d .  

flows. The f l u i d ,  i n  f a c t ,  can be Newtonian o r  non-Newtonian. I n  t h e  case 

of Newtonian f l u i d s ,  as w e  s h a l l  see later,  t h e  normal stresses Ol and O2 

are zero.  Viscometric flows are of g r e a t  i n t e r e s t  t o  r h e o l o g i s t s .  

1 

Couette flow and P o i s e u i l l e  flow are w e l l  known examples of such 

The purpose of t h i s  note  is  t o  present  a new viscometr ic  flow model 

which has  no t  been s tud ied  f o r  non-Newtonian f l u i d s .  Also we in t roduce  

a theory f o r  t h e  c a l c u l a t i o n  of t h e  second normal stress 

a scheme f o r  measuring a2 i n  p r a c t i c e .  

O2 
and p resen t  

We s h a l l  begin by s t a t i n g  t h e  f l u i d  flow model. The flow is  generated 

by d r ipp ing  f l u i d  on the  top c e n t e r  of a ver t ical  c y l i n d r i c a l  block of 

radius R and of he igh t  h a t  a s l o w  s teady  rate forming a t h i n  l a y e r  on 

t h e  w a l l s  ( see  F i g .  1). 

Thin f i lm( th i ckness  -6) 

Figure 1 
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We assume t h a t  t h e  th ickness  of t h e  l a y e r  6 i s  cons tan t  throughout t h e  

motion. Discussion wi th  a group of Polymer s c i e n t i s t s  i n d i c a t e s  a d i f f i c u l t y  

wi th  t h i s  assumption; t h a t  is, the  th ickness  of t h e  l a y e r  would be l a r g e r  

o r  smaller a t  t h e  ends of t h e  cy l inder  depending on t h e  "thickening" o r  

"thinning" proper ty  of t h e  f l u i d .  

making t h e  assumption t h a t  h >> R s o  t h a t  t he  flow w i l l  have s t r a i g h t  

stream l ines  over a l a r g e  area of t h e  w a l l  of t h e  cy l inder .  W e  now d i scuss  

t h e  equat ions governing t h i s  motion. 

We g h a l l  overcome the  d i f f i c u l t y  by - 

2.  Equations of motion 

Notation: l e t  u denote the  v e l o c i t y  of t h e  f l u i d ,  Te denote t h e  

extra stress and p denote t h e  pressure  f i e l d .  

Then t h e  momentum equat ion is  

p = - V  p + d i v  Te + V (gz) , 

and t h e  incompress ib i l i t y  condi t ion  y i e l d s  

d i v  u = 0. - 

I n  equat ion (M) g i s  t h e  a c c e l e r a t i o n  due t o  g r a v i t y  and g z  provides  

t h e  p o t e n t i a l  of t he  body f o r c e  a t  a d i s t ance  z measured from t h e  top  

of t he  cyc l inder .  

c y l i n e r  with the  z a x i s  po in t ing  downwards. (See Fig. 2 . )  

We as s ign  a po la r  coord ina tesys tem from t h e  top  of t h e  

In  what fol lows w e  make t h e  u s u a l  assumptions t o  s impl i fy  our mathe- 

matical model. These assumptions are more phys ica l  and r a t h e r  s t r a i g h t  

forward. F i r s t  we assume t h a t  t h e  f l u i d  v e l o c i t y  i s  i n  t h e  z d i r e c t i o n :  
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Figure 2.  

h 

u = u  i .  
z z  

Then t h e  incompress ib i l i t y  condi t ion  (I) becomes 

- -  - 0. a Z  

This  y i e l d s  

A 

u = uz(r ,O) iz .  

Furthermore, w e  assume symmetry i n  t h e  & d i r e c t i o n  so t h a t  u w i l l  have 

t h e  form 

A 

u = u z ( r ) i z .  
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For the steady flow problem, the assumption that streamlines are straight 

and parallel to the z-direction means that p; in equation (M) is zero; 

hence equation (M) reduces to 

0 = -Vp + div T + V(gz). (M') l e  

It is well known (Coleman and No11 [l]) that for steady viscometric 

flows the extra stress tensor Te has the form 

0 

- 
Te - 

L 

where 

is known as the shear stress and K is the shear rate defined by 

du 

dr 
Z K = -  

Trr, TZz and Tee are defined by 
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The q u a n t i t i e s  Ol(K) and 0 2 ( K )  are known as t h e  f irst  and second 

normal stress of t h e  f l u i d .  This  convention of r ep resen t ing  al and a2 

as t h e  d i f f e r e n c e s  of normal stress components is  similar t o  t h e  one used 

i n  [ 4 ] .  Various o the r  au thors  us? d i f f e r e n t  conventions. For example 

Coleman and No11 [l] use t h e  convention 

The shea r  dependent v i s c o s i t y  q E q ( K )  is i d e n t i f i e d  wi th  T ( K )  i n  t h e  

rheo log ica l  l i t e r a t u r e  as 

T ( K )  = K n ( K )  . 

For imcompressible Newtonian f l u i d s  

T ( K )  = K q O ,  no = cons tan t  > 0,  

and f o r  i d e a l  o r  p e r f e c t  f l u i d s  

T ( K )  Z 0 (K) a2(K) 5 0. 1 

For Reiner-Rivlin f l u i d s  al(K) Z a2(K) (see [ 3 ] ) .  The func t ion  T(K)  

is  usua l ly  measured by a s imple plane shearflow. Thus t h e r e  are c o n s t i t u t i v e  

models f o r  T ( K )  f o r  d i f f e r e n t  f l u i d s  a v a i l a b l e  i n  t h e  l i t e r a t u r e .  A l s o  

t h e r e  are var ious  c o n s t i t u t i v e  models f o r  crl(K) i n  t h e  polymer sc i ence  
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l i t e r a t u r e .  However, t h e r e  are few models f o r  0 2 ( K )  because of experi-  

mental d i f f i c u l t i e s .  This  no te  p re sen t s  a scheme f o r  t h e  measurement of 

a2. 

measure t h e  v i s c o s i t y  of Newtonian f l u i d s .  We s h a l l  d i scuss  t h i s  i n  t h e  

next  s e c t i o n  under t h e  c a l c u l a t i o n  of t h e  flow rate. 

Also t h e  model can be used as a visometer,  t h a t  i s ,  i t  can be used t o  

We observe from (3) t h a t  K i s  a func t ion  of r only and hence s o  
. 

i s  Te.  Under these  condi t ions  (11') can be w r i t t e n  as 

1 d  Tee - -- ( r T r r )  - - - r d r  r ar ' 

Equations (5) - ( 7 )  determine p i n  t h e  form 

p = a z  + f ( r ) ,  (8) 

where a ,  a cons tan t ,  and f a func t ion  of r only,  are t o  be  determined. 

The cons tan t  a i n  (8) is determined from t h e  c o n t i n u i t y  of p re s su re  

ac ross  t h e  f r e e  boundary a t  r = R -k 6 ,  

p = a z  + f ( R + 6 )  = po , 

8 

f o r  a l l  va lues  of z, where po is t h e  atmospheric pressure .  Hence a = 0;  

and p = f ( r ) .  In  t u r n  equat ion ( 7 )  g ives  u s  



o r  

r C  
= ?(K(r ) )  = -g 2 + r 9 Tr z 

i. 

where C is  a cons tan t  and w e  determine C by t h e  f a c t  t h a t  on t h e  

f r e e  boundary r = R + 6 ,  . c (K(r i -6) )  - t h e  shea r  stress - i s  zero.  This  

g ives  

where 

For most 

L 

ro = R + 6.  

l u i d s  the  c o n s t i t u t i v e  r e l a t i o n  ,dr T can ,e obtainel 

a func t ion  of K. Thus equat ion ( 9 )  can be inve r t ed  i n  terms of K. 

duz (s) 
= K(r) .  Also us ing  t h e  f a c t  t h a t  uz(R) = 0, w e  have 

d r  But 

as 

That is, 

Thus t h e  v e l o c i t y  p r o f i l e  i s  determined. It can be shown ( see  [l]) t h a t  

t h e  normal stresses Trr and Tee can be obta ined  i n  terms of f i r s t  and 

second normal stresses as fol lows:  
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These r e l a t i o n s  w 1 be used n so lv ing  f o r  f ( r )  i n  or..zr t o  f i n d  t le 

pressure  f i e l d  from equat ion (1) .  In  p r i n c i p l e ,  i f  w e  know t h e  c o n s t i t u t i v e  

equat ions f o r  al and a2 as func t ions  of K w e  could so lve  equat ion 

(5). Unfortunately,  although s e v e r a l  models f o r  al e x i s t  O2 i s  r a r e l y  

knaJn. I n  s e c t i o n  4 w e  g ive  a procedure f o r  t h e  determinat ion of O 2 '  

3. Flow Rate 

It i s  customary i n  v iscometr ic  flows t o  c a l c u l a t e  t h e  flow ra te  a t  

t h e  e x i t  of t h e  flow model. This  c a l c u l a t i o n  is  used t o  o b t a i n  T i n  

terms of t h e  flow rate. However, measurements done i n  t h i s  way are sub- 

j e c t  t o  e r r o r s  due t o  t h e  swel l ing  e f f e c t s  of non-Newtonian f l u i d s ;  f o r  

f u r t h e r  d e t a i l s  see [ 3 ] .  

of any Newtonian f l u i d s  as w e  now descr ibe .  

The model can be used t o  measure t h e  v i s c o s i t y  

L e t  Q be t h e  volume d ischarge  of t h e  f l u i d  a t  t h e  end of t h e  cy l in -  

de r  pe r  u n i t  t i m e .  Then 

0 
r 

Q = 2 i r 4  u z ( r ) r  d r  , 
R 

using t h e  boundary condi t ion  

i n  t h e  above express ion  and i n t e g r a t i n g  by p a r t s  we have 

uz(R) = 0 and t h e  shear  ra te  

R 



Using equat ion (10) w e  have 

0 L r 

Q = a u z ( r  0 0  ) r  - .h;'[- $+$:]r2dr. 

Thus i f  Q and t h e  v e l o c i t y  on t h e  boundary are known, i n  p r i n c i p l e  

T can be inve r t ed  and obtained i n  terms of Q and uz( ro) .  As i n  

t h e  case  of o the r  models un less  t h e  magnitude of swel l ing  is  known w e  

can no t  use  t h i s  c a l c u l a t i o n  t o  measure T. But f o r  Newtonian f l u i d s ,  

w e  no te  t h a t  

\ 

From equat ion  (9)  w e  have 

I n t e g r a t i o n  of t h e  l a s t  equat ion using t h e  boundary condi t ion  

y i e l d s  

uz(R) = 0 

S u b s t i t u t i n g  t h i s  va lue  of uz i n  equat ion (13) w e  have, 

0 
r 

o r  I 

J 

which g ives  t h e  v i s c o s i t y .  
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4. Theory f o r  t h e  Calcu la t ion  of Second Normal S t r e s s .  

For convenience we  rewrite equat ion (1) wi th  p = f ( r ) :  

d 1 - d r  T rr + r (Trr- Tee) = f ’ ( r ) .  

\ 

We observe t h a t  again 

Figure 3 

Fluid  
\ 

We i n t e g r a t e  equat ion(14)  over [R- t  6 , R ]  and l e t  t h e  atmospheric 

pressure  be zero f o r  convenience. The r e s u l t  i s  

Since t h e  normal stress i s  zero  on the  f r e e  boundary 

Trr(R+6) = 0. Thus t h e  l a s t  equat ion s i m p l i f i e s  t o  

r = R + 6, w e  have 
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The q u a n t i t y  T (R) is  t h e  normal stress on t h e  boundary i n  t h e  r a d i a l  

d i r e c t i o n  and f(R) i s  t h e  p re s su re .  This  d i f f e r e n c e  could be  d i r e c t l y  

measured by a p i t o t  tube as shown i n  Figure 4 .  

rr 

Measurement 

i n i t i a l  
1 
I 
t 

i ! 
Figure  4 .  
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L e t  

Thus \ 

W e  w i l l  o b t a i n  an express ion  f o r  G2 from equat ion  (16).  F i r s t  we 

cons ider  t h e  express ion  ( 9 )  f o r  T ( K ) .  This  can be r ewr i t t en  as 

e r 2 + r T - t r o = ~  2 , 
2 

which y i e l d s  

We observe t h a t  only t h e  '+' s i g n  i s  permiss ib le .  Also from equat ion  

(9 )  we  have 

o r  

We use equat ion  (17)  t o  s u b s t i t u t e  f o r  r i n  t h e  bracke ts .  The r e s u l t  i s  
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or 

Hence using t h i s  expression i n  equat ion (16) w e  have 
i 

o r  

- 
where ‘I is  t h e  shear  stress on t h e  w a l l :  

- 
T = r ( K ( R ) ) .  

- 
D i f f e r e n t i a t i n g  x i n  (18) wi th  r e spec t  t o  T~ w e  have 

- 
where K is t h e  r a t e  of shea r  on t h e  w a l l .  I n  p r i n c i p l e  - can be 

measured from experiments o r  can be ca l cu la t ed  s i n c e  x and are 

known. This  a n a l y s i s  provides  a means f o r  measuring the  second normal s t r e s s . .  

dy 
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